Refine Your Search

Topic

Author

Search Results

Technical Paper

The Effects of Fuel Volatility and Structure on HC Emissions from Piston Wetting in DISI Engines

2001-03-05
2001-01-1205
Piston wetting can be isolated from the other sources of HC emissions from DISI engines by operating the engine predominantly on a gaseous fuel and using an injector probe to impact a small amount of liquid fuel on the piston top. This results in a marked increase in HC emissions. All of our prior tests with the injector probe used California Phase 2 reformulated gasoline as the liquid fuel. In the present study, a variety of pure liquid hydrocarbon fuels are used to examine the influence of fuel volatility and structure. Additionally, the exhaust hydrocarbons are speciated to differentiate between the emissions resulting from the gaseous fuel and those resulting from the liquid fuel. It is shown that the HC emissions correspond to the Leidenfrost effect: fuels with very low boiling points yield high HCs and those with a boiling point near or above the piston temperature produce much lower HCs.
Technical Paper

The Texas Diesel Fuels Project, Part 3: Cost-Effectiveness Analyses for an Emulsified Diesel Fuel for Highway Construction Equipment Fleets

2004-03-08
2004-01-0086
The Texas Department of Transportation (TxDOT) began using an emulsified diesel fuel as an emissions control measure in July 2002. They initiated a study of the effectiveness of this fuel in comparison to conventional diesel fuel for TxDOT's Houston District operations and included the fleet operated by the Associated General Contractors (AGC) in the Houston area. Cost-effectiveness analyses, including the incremental cost per ton of NOx removed, were performed. NOx removal was the focus of this study because Houston is an ozone nonattainment area, and NOx is believed to be the limiting factor in ozone formation in the Houston area. The cost factors accounted for in the cost-effectiveness analyses included the incremental cost of the fuel (including an available rebate from the State of Texas), the cost of refueling more often, implementation costs, productivity costs, maintenance costs, and various costs associated with the tendency of the emulsion to separate.
Technical Paper

The Texas Project, Part 5 - Economic Analysis: CNG and LPG Conversions of Light-Duty Vehicle Fleets

1998-10-19
982447
The Texas Project was a multi-year study of aftermarket conversions of a variety of light-duty vehicles to CNG or LPG. One aspect of this project was to examine the factors that influence the economics of fleet conversions to these alternative fuels. The present analysis did not include longer-term effects (such as possible increases in exhaust system life or increases in tire wear). Additionally, assumptions were required to estimate the costs of repairs to the alternative fuel system and engine. Other factors considered include conversion cost, fuel prices, annual alternative fuel tax (as applied for the state of Texas), annual miles accumulated, and the percent miles traveled while using the alternative fuel for dual fuel conversions.
Technical Paper

Three-Dimensional Numerical Simulation of Flame Propagation in Spark Ignition Engines

1993-10-01
932713
Multi-dimensional numerical simulation of the combustion process in spark ignition engines were performed using the Coherent Flame Model (CFM) which is based on the flamelet assumption. The CFM uses a balance equation for the flame surface area to simulate flame surface advection, diffusion, production and destruction in a turbulent reacting flow. There are two model constants in CFM, one associated with the modeling of flame surface production and the other with the modeling of flame surface destruction. Previous experimental results on two test engines charged with propane-air mixtures were used to compare with the computations for different engine speeds, loads, equivalence ratios and spark plug locations. Predicted engine cylinder pressure histories agree well with the experimental results for various operating conditions after the model constants were calibrated against a reference operating condition.
Journal Article

Validating Volt PHEV Model with Dynamometer Test Data Using Autonomie

2013-04-08
2013-01-1458
The first commercially available Plug-In Hybrid Electric Vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in December 2010. The Volt's powertrain architecture provides four modes of operation, including two that are unique and maximize the Volt's efficiency and performance. The electric transaxle has been specially designed to enable patented operating modes both to improve the electric driving range when operating as a battery electric vehicle and to reduce fuel consumption when extending the range by operating with an internal combustion engine (ICE). However, details on the vehicle control strategy are not widely available because the supervisory control algorithm is proprietary. Since it is not possible to analyze the control without vehicle test data obtained from a well-designed Design-of-Experiment (DoE), a highly instrumented GM Volt, including thermal sensors, was tested at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF).
X